Thought-controlled robots power us up

Patients with motor disability sometimes have difficulty using a conventional electric wheelchair, often due to a pathological tremor. Developed by an international group with Etienne Burdet of the Imperial College in London, the Brain Controlled Wheelchair uses a screen with different buttons representing goals. A cap with electrodes is placed on the head of the user to detect the brain activity, which is used to derive the desired action, while sensors on the robot guide it to the desired goal.

Invasive methods involve needles or some form of electrical equipment placed directly inside the body. This allows the measurement of more localised signals, which can also provide for a more granular rate of control. In an experiment performed by the Duke University Medical Centre, an array of 96 hair-thin electrodes was placed in a monkey's brain. The monkey was then trained to use a joystick to position a cursor over a target on a computer screen. In the meantime, the brain activity was recorded and analysed by a computer to predict the motion of the cursor. When the researchers understood the signals they were able to control a robotic arm in the same way that the monkeys' arm was being controlled. The cursor was also now controlled by the brain signals instead of needing joystick control. At one point the monkey realised she did not need to move her arm at all and so, keeping her arm still, she controlled the robot arm using only her brain and visual feedback.